Творения рук человеческих (Естественная история машин) - 1988.
   

Принципы движения или физиология машин

 

Если мы построим структурную схему машины и с ее помощью в качестве одного из вариантов поставленной задачи составим кинематическую схему, то тем самым мы создадим «скелет» будущей машины. Для того чтобы этот скелет стал машиной, все составляющие его звенья должны приобрести нужную форму, а все кинематические пары - получить реальный вид. При этом должно быть учтено и то, что в каждой паре происходит трение, которое необходимо снизить.
Цель создания машины - выполнение определенной работы, и она должна быть снабжена рабочим органом, предназначенным для этой цели. Машина должна работать в движении, и следовательно, должен быть двигатель или целая система двигателей в том случае, если машина в соответствии со своей структурой имеет несколько ведущих звеньев. А для того чтобы сам двигатель был приведен в движение, необходимо к нему непрерывно доставлять рабочее «тело», которое он переработает и в результате получит нужное количество энергии. На протяжении веков существования и развития машин неоднократно менялся их двигатель. Сначала это была сила человека и животных, замененная затем водой и ветром. И, что очень важно, в процессе создания и совершенствования машины человек овладевает круговым движением. Но, конечно, переход от вращения рукоятки ворота к водяному колесу не был простым, и лишь гениальный ум какого-то безвестного древнего инженера создал это чудо.
Приведение в движение машин с помощью... живых сил. Даже когда к движущей силе воды присоединилась и движущая сила ветра, все же значительная часть машин приводилась в действие силой человека и животных. Просматривая труды механиков XVI- XVII вв. и даже XVIII в., мы найдем в них много примеров использования живых сил для приведения в действие машин.
Еще в I в. до н. э. было описано водоподъемное колесо, которое приводилось во вращение ногами раба. Спустя полторы тысячи лет появляется описание водоподъемного устройства, служащего для подъема воды из рудников и шахт. Бадья с водой висит на канате, наматывающемся на барабан, который приводится во вращение через зубчатую передачу от другого вала. С последним жестко связано ступальное колесо, которое вращают, толкая его ногами два человека. Интересно, что коленчатый вал впервые появляется в технике как удобное приспособление при использовании людского труда для привода мельницы.
Среди машин эпохи Возрождения есть несколько ступальных колес: среди них такие, которые работник вращает в основном своим весом, и такие, которые вращает сидящий человек мускульной силой своих ног, есть и наклонное ступальное колесо, плоскость круга которого работник отталкивает ногами, держась руками за горизонтальную штангу. Были и некоторые другие варианты применения силы человека для приведения в действие машины. Так, подъемные краны, работавшие в некоторых морских портах, имели в качестве двигателя барабан большого диаметра, внутри которого бегали (как белка в колесе) несколько человек.
Даже в эпоху буржуазных революций и изобретения парового двигателя машины, работавшие в городских цехах, приходилось приводить в движение силой животных или чаще силой человека, что было удобнее. По свидетельству одного из крупнейших деятелей Французской буржуазной революции, прозванного «организатором ее побед», военного специалиста, математика и механика Лазара Карно, в то время был изобретен новый, весьма остроумный способ приложения силы человека к машинам. Крупным преимуществом этого нового способа было то, что человек попеременно действует ногами и руками на большую рукоятку, которая движется вперед и назад, и при этом сидит, что «весьма облегчает его труд и дает возможность использовать на машину ту силу, которую он затратил бы на поддержание себя в стоячем состоянии».
Таким образом, долгое время сам человек или в лучшем случае животные включались в работу машины. В наиболее тяжелых случаях, в особенности если это разрешало местоположение машины, роль двигателя передавалась потоку воды или ветру. Что касается материалов, из которых строились машины, то основным из них было дерево. Недаром первое из известных определений машины, высказанное Витрувием, характеризует ее как «сочетание соединенных вместе деревянных частей, обладающее огромными силами для передвижения тяжестей». Он добавляет, что «действует она посредством круговращения».
С того времени прошло более чем полтора тысячелетия, а основным материалом для изготовления машин продолжало оставаться дерево. Из дерева делались не только валы, колеса, оси, тяги, но и зубчатые колеса, даже тогда, когда уже была создана теория зубчатого зацепления и было найдено, что для профилирования зубчатых колес лучше всего подходят две кривые - циклоида и эвольвента. Но начали «входить в строй» и металлические детали, в особенности после того, как началась работа над изобретением паровой машины, длившаяся почти целое столетие, а известные и безвестные изобретатели создали первые технологические машины для хлопчатобумажной и шерстяной промышленности.
Начавшаяся техническая революция была непосредственно связана с преобразованием наук. Рядом со становлением математики и механики - двух наук, сыгравших первенствующую роль в научной революции,  на протяжении всего века идут поиски таких особенностей, которые роднили бы живой организм с машиной. Естественно, что такое направление в развитии биологии и физиологии в качестве отправной точки имело все ту же механику: быстрый рост знаний в этой науке стимулировал поиски таких явлений в живом мире, которые также можно было бы пояснить с помощью механики.
Как уже говорилось, английский врач Уильям Гарвей, основоположник физиологии и первооткрыватель кровообращения, попытался создать механическое учение о движении крови в организме. Это учение, принятое медиками того времени с большим сопротивлением и не сразу, в сущности, было приложением динамики к физиологии и сразу же натолкнуло ученых на мысль о том, не являются ли животные своего рода машинами. Напомним, что в начале XVII в. динамика еще не только находилась в процессе становления, но гидравлика, т. е. учение о течении воды, была изучена достаточно хорошо, и поэтому установить параллель между сердцем, подающим кровь в сосуды, и насосом, подающим воду в трубу или в русло канала, было нетрудно.
К этому нужно добавить и то, что понятие «машина» не существовало, и бытовало определение, приближавшееся к определению Витрувия. Таким образом, механическое учение о кругообороте крови в организме, позволявшее проводить некоторые численные подсчеты, могло дать механикам материал для размышления: сердце работало, подобно машине, следовательно, оно и было своеобразной машиной.
Вспомним и то, что с другой стороны подошел к изучению человека итальянский механик и врач Джованни Борелли, основоположник нового научного направления - так называемой ятромеханики. Он применил к исследованию человека законы механики. Рассматривая сердце как насос, легкие как пневматическую систему, руки и ноги как рычаги, ученый вычисляет при этом механические возможности организма. В частности, он пытался рассчитать, может ли плавать под водой и в какой степени его физиологические функции соответствуют аналогичным функциям машины.
Более определенно высказался в этом отношении Рене Декарт. Он прямо называл животное машиной, умолчав при этом о человеке: в его время нельзя было не только излагать подобные мысли, но и думать так было опасно. Однако идея подобия человека и машины или животного и машины продолжала развиваться. Некоторые высказывания в этом направлении можно найти, например, у доктора физики Роберта Гука. Известно также, что многие механики старались построить искусственное животное или искусственного человека, который обладал бы некоторыми функциями живого существа. При этом не забывали и о некотором физиологическом подобии: механическая утка не только клевала зерно, но и имела пищеварительный тракт, через который удалялись «отходы».
Представляется несомненным и то, что первые чертежи творцов паровой машины, скорее, напоминали схему какого-то процесса в животном организме, чем машину. И даже механизм, включающий пару - цилиндр - поршень, являлся не чем иным, как обращенным насосом, своеобразной разгадкой этого непонятно каким образом работающего насоса - сердца.
Механики искали не только новый вид машин, предназначенных для замены человеческой руки, но одновременно велись и поиски искусственного человека. Эти поиски, как известно, не увенчались успехом, но практической механике они дали многое. Были изучены возможности передаточных механизмов, управлявших отдельными движениями, начато построение машин автоматического действия.
Работы этого направления, как уже отмечалось, были теоретически обоснованы французским философом и врачом Жюльеном Ламетри, книга которого «Человек-машина» была строжайше запрещена церковью. Приблизительно к таким же выводам пришел видный немецкий врач, профессор медицины Фридрих Гофман, переработавший учение своих предшественников. По его мнению, человеческое тело представляет собой не что иное, как машину, которая приводится в движение непрерывной циркуляцией крови. Поэтому и жизнь - в полном смысле механическое явление, для пояснения которого необходимы и достаточны лишь законы механики. Прояснение физиологических процессов с точки зрения механики благодаря европейской известности этого ученого, несомненно, не могло не повлиять на находившуюся в процессе созидания науку о машинах вне зависимости от того, соглашались ли с ней те или иные ученые или нет. С этим обстоятельством были связаны и поиски двигателя, который смог бы заменить водяное колесо, но не был бы привязан к определенной местности.
Как и его предшественники, профессор медицины считал, что двигателем потока крови служит сердце. Но он вносил и некоторые коррективы в это утверждение: работа сердца направляется и регулируется движениями нервов. По его мнению, по нитям нервов пробегает некий флюид, своего рода эфир, или «дух жизни». Можно полагать, что эта теория возникла у него под влиянием идей Исаака Ньютона, который пояснял зрительные ощущения колебаниями эфира, распространяющимися вдоль нервов. Местоположением «духа жизни» считался головной мозг, который и управляет движениями мускулов, системой питания и всеми прочими функциями организма.
Подобное учение излагал и известный в Европе голландский врач, ботаник и химик Герман Бургаве. Он пояснял функции отдельных органов человека с точки зрения механики и сводил их к движениям разного рода, а структуру человеческого тела сводил к чисто механическим понятиям, составляя его из деталей и частей, которые обозначал терминами, заимствованными из механики.
Естественно, что все эти учения, которые к тому же поддерживали многие ученые, не могли не оказать влияния на развитие машиностроительной практики. На протяжении всего столетия шла интенсивная работа по изобретению многочисленных автоматов. Эта работа шла параллельно с изобретением новых технологических машин и в определенной степени была с ней связана. Если можно было «выдумать» такие механизмы, которые могли бы заменить действие человеческих рук, то почему же нельзя было изобрести и сами руки, а вместе с ними и тело, управляющее ими?
Одним из известных механиков этого направления был француз Жак де Вокансон, построивший автомат «играющий флейтист», а затем ряд других автоматов.
Его «игрок» мог самостоятельно исполнять 12 пьес для флейты. При этом пальцы автомата воспроизводили достаточно точно движения реального музыканта. Изобретатель сконструировал также механический шелкоткацкий станок и, будучи инспектором королевских шелкоткацких мануфактур, значительно усовершенствовал механическое оборудование. Собранная им коллекция автоматов и механизмов была положена в основу созданной позже Парижской консерватории искусств и ремесел.
Большую известность получили также автоматы, которые построили швейцарские механики Пьер-Жак Дроз и его сын Анри-Луи Дроз. Дроз-отец построил «писца», движениями которого управляла сложная система кулачков, а Дроз-сын - «чертежника», который не только рисовал, но воспроизводил и другие движения. Совместно они создали механическую куклу - «девушку, игравшую на клавесине», которая поворачивала голову, двигала глазами, как бы следя за нотами, а закончивши игру, вставала и раскланивалась. Эти автоматы произвели большое впечатление на современников.
Как уже говорилось, врач по профессии Жюльен Ламетри находил подобие и даже тождество между физиологией человека и «физиологией» часов. Принимая во внимание только механический аспект в поведении человека и животных, так же, как и некоторые другие современные ему врачи, он был далек от истины, но был прав в одном: поиски механиков следовало продолжить.
Но и без того они сделали немало. Если им и не удалось механически воспроизвести физиологические функции человека, тем не менее они впервые решили основную задачу автомата: разделили движения двигателя на целую серию частных движений и привели их в согласование, т. е. сделали то, что сейчас выполняется с помощью циклограммы. При этом им удалось решить и вторую важную задачу: они нашли тот тип механизма, при помощи которого удалось воспроизвести самые сложные по своему характеру движения, им оказался кулачковый механизм, иногда с очень сложной формой ведущего звена.
Таким образом, еще два века назад было решено несколько задач, относящихся к построению машин. Были созданы рабочие органы машин, которые смогли заменить движения человеческой руки, найдены схемы построения автоматов, работающих от одного ведущего звена, изобретена паровая машина, рабочим телом которой был пар, и найдена рациональная конструкция машины. Были поставлены и ближайшие задачи, связанные с улучшением работы механического оборудования вообще. Это повышение коэффициента полезного действия паровой машины, что повлекло за собой изучение свойств пара и его работы в машине, а также рост производительности рабочих машин, что в первую очередь требовало снижения трения в шарнирах и иных кинематических парах машин. Попытки решения первой проблемы привели к созданию термодинамики, второй - к разработке учения о трении.
В прошлом столетии наряду с развитием общей науки о машинах проводилось исследование в области и тех специальных наук, которые исследуют отдельные виды машин, их части, технические процессы. Машины все больше и больше внедряются в производство, принимая на себя значительную часть работы, выполняемой человеком. Появляются и такие машины, которые выполняют операции, вообще невозможные для человека. Естественно, что все это требовало более глубокого изучения процессов, происходящих в машинах. Если два века назад машины работали без помощи ученых, а их строители считали таковую помощь не только бесполезной, но и вредной, то в следующем столетии положение в корне меняется: научное образование постепенно становится обязательным для каждого квалифицированного инженера.
Приведение в движение машин с помощью воды, ветра, тепла и электричества. Даже когда была изобретена паровая машина, древнейшие водяные двигатели продолжают оставаться важным источником энергии. Продолжается исследование водяных колес и улучшается их конструкция.
Так, в первой четверти XIX в. математик и механик Жан Виктор Понселе представил Французской академии наук «Мемуар об улучшении теории и конструкции водяных колес», который и получил премию академии.
Дело заключалось в том, что во Франции того времени водяные колеса доставляли существенную часть энергии для промышленных предприятий. Как правило, механики, строившие колеса, применяли плоские лопатки: ученый предложил лопатки вогнутого типа и тем самым повысил полезное действие колес; его лопатки получили признание не только во Франции, но и за рубежом.
В середине прошлого века английский инженер Уильям Фэйрберн внес в водяное колесо дальнейшее совершенствование: он придал лопаткам форму сосудов, в которые поступала вода. При дальнейшем вращении колеса вода полностью выливалась из лопаток. Такая конструкция лопаток на одну четверть увеличила отдачу колеса.
Многие установки подобного типа были способны заменить силу ста лошадей. Некоторые из этих колес работали целое столетие. Постепенно их заменяли турбинами. Первые турбины появились еще в середине XVIII в., когда венгерский ученый Янош Сегнер предложил модель турбины, так называемое сегнерово колесо. Колесо это усовершенствовал Леонард Эйлер. Но его изобретение не привлекло внимания инженеров, вполне удовлетворявшихся водяными колесами, которые они умели строить. Лишь в 1827 г. французский инженер Бенуа Фурнейрон создал практически пригодную к эксплуатации модель радиальной центробежной турбины. Она вращалась при значительно более высоком числе оборотов, чем водяные колеса. Оказалось, что вода вновь может соперничать с паром. Однако лишь в конце XIX в. появляются новые конструкции водяных турбин: впрочем, тогда у них появился новый потребитель энергии - динамо-машины, преобразовывавшие механическую энергию, получаемую от турбин, в электроэнергию.
Тем временем развивались паровые машины, которые сначала служили лишь для откачки воды из шахт и только через несколько десятилетий начали испытываться в качестве промышленных двигателей. Одновременно начинается изучение свойств пара и проблем, связанных с его распространением и передачей. Основную роль в этом сыграли исследования французских ученых: во главе французской школы теплотехников стоял Жан Батист Жозеф Фурье. После организации в Париже Политехнической школы он учился в ней, а затем стал преподавателем. Известно, что он принял участие в Египетской кампании Наполеона и при организации Египетского института стал его непременным секретарем. Здесь он развил большую научную и организационную деятельность. Благодаря своим работам по теории тепла он стал основоположником математической физики, любопытно, что он же внес заметный вклад и в египтологию.
Особую значимость приобрело учение о тепле после изобретения локомотива. В результате быстрого железнодорожного строительства и развития сети железных дорог вопросы теории тепла стали весьма животрепещущими. Ведь в топках локомотивов сжигался уголь, и от того, какую теплоотдачу можно было получить от пара и от лучшей конструкции парового котла, зависели экономия топлива, а значит, и расходы на его приобретение. Число локомотивов быстро росло, но, кроме них, мощные паровые установки были и на промышленных предприятиях, появились паровые двигатели и на морских и речных судах. Все это повысило интерес к изучению всех явлений, связанных с получением пара и с его работой в паровых машинах, а также с вопросами его экономии. Так развивалась новая наука - термодинамика, у истоков которой стоял великий русский ученый Михаил Васильевич Ломоносов.
Выше мы говорили о французском математике Лазаре Карно. Его сын Сади Карно опубликовал работу «Размышления о движущей силе огня и о машинах, способных развивать эту силу», в которой рассмотрел вопрос о преобразовании механического движения в тепло. Он построил замкнутую кривую теплового процесса (цикл Карно) и пришел к заключению, что полезную работу можно получить лишь при переходе тепла от более теплого тела к более холодному. При этом он сформулировал теорему о том, что величина работы зависит только от разности температур обоих тел и не зависит от вида вещества, работающего в машине. Так пар был заменен газом, и процесс горения был осуществлен в самой машине. По словам Карно, «целесообразно сжимать воздух насосом, затем переводить его в закрытую камеру, вводя в нее маленькими дозами топливо при помощи механизма, легко осуществляемого, затем предоставить газам возможность действовать на поршень в том же цилиндре или в каком-либо другом расширяющемся сосуде и, наконец, вытолкнуть их в атмосферу или предварительно направить к паровому котлу для использования их теплоты».
Идеи Карно оказались плодотворными, и на протяжении первой половины прошлого века шли более или менее успешные поиски двигателей, работающих на газе. Одним из первых эту задачу решил французский изобретатель Этьенн Ленуар, который в 1857 г. построил двигатель, работавший на светильном газе. Затем в 1876 г. немецкий конструктор Николаус Отто построил двигатель внутреннего сгорания, и двигатели подобного типа, работавшие на нефти, керосине и бензине, быстро распространились: они нашли применение как в промышленности, так и на транспорте - в автомобилях, а затем и в самолетах.
Двигатели Отто не допускали высокого сжатия. Чтобы добиться этого и поднять коэффициент полезного действия, немецкий инженер Рудольф Дизель в 1897 г. создал четырехтактный двигатель (названный его именем), который работал по другому принципу: в течение первого такта в цилиндр всасывался воздух, за второй он сжимался и нагревался. В конце второго такта в камеру сжатия поступало через форсунку распыленное горючее, третий такт был рабочим; в течение последнего (четвертого) такта продукты сгорания выбрасывались в атмосферу.
Так появился новый тип двигателя, при этом новое устройство полностью вписалось в старую форму кривошипно-ползунного механизма. Но в том же самом веке новые формы приобрел вращательный механизм. Его основной формой, с одной стороны, стала турбина, с другой - динамо-машина и электромотор.
Напомним, что первые научные исследования электрического тока относятся к тому времени, когда итальянский физик и физиолог Алессандро Вольта изобрел источник постоянного тока «вольтов столб», тем самым было положено начало исследованиям электричества как нового источника энергии. Основой развития электротехники стала электромагнитная теория, которую разработал английский ученый Джеймс Клерк Максвелл. В середине прошлого века начинаются поиски электрогенератора, т. е. машины для производств электрического тока. В 1869 г. бельгийский инженер Зеноб Грамм изобрел генератор постоянного тока с кольцевым якорем. Эта машина претерпела ряд улучшений, и к 80-м годам прошлого века проблема генератора была решена.
Следующим этапом были поиски возможности передачи электротока на расстояние. Русский инженер Михаил Осипович Доливо-Добровольский предложил применять для передачи электрической энергии трехфазный ток. Он же построил первый асинхронный двигатель трехфазного тока и в 1891 г. на выставке во Франкфурте-на-Майне передал электроэнергию на расстояние около 170 км.
Эти новые возможности, открывшиеся перед техникой, в частности перед машиностроением, повлекли за собой новое направление в промышленности. Повсеместно начали строить «фабрики» электроэнергии - электростанции. Исходным рабочим телом на последних были пар или вода, приводившие во вращение паровую или водяную турбину, с которой был соединен электрогенератор. Впрочем, в небольших электростанциях роль первичного двигателя исполняла паровая машина, а спустя несколько десятилетий - нефтяной или керосиновый двигатель. Выработанная с помощью генератора энергия передавалась на место потребления к системе электродвигателей. Это дало возможность подвести энергию к каждой рабочей машине, и цехи производственных предприятий освободились от леса ременных передач, которые к тому же были источниками производственных травм.
Таким образом, человечество вступило в новый век, располагая для приведения машин в действие энергией ветра, воды, тепла и электричества. Эти виды энергии могут действовать, не только поступая извне, но и образуясь в результате работы соответствующего рабочего тела в самой машине. Изучаемые издавна гидравлика и пневматика легли в основу создания новых механизмов, входящих в кинематический скелет машины. Электрические, электромагнитные и электронные приборы также вошли в состав машин, кроме того,  электродвигатели, которые вначале устанавливались около машины и приводили ее в движение с помощью все того же ременного привода, затем начали входить в состав машины и в конце концов составили ее интегральные части.
К сожалению, не вся энергия, получаемая машиной, идет на выполнение некоторой полезной работы, для оценки которой, как известно, служит коэффициент полезного действия (равный отношению количества полученной работы к количеству затраченной и всегда меньший единицы). Но куда же девается та работа, которая равна разности между всей затраченной работой и той, которая получена и пошла в дело? Оказывается, энергия уходит по многим каналам. Так, в тепловых машинах не все тепло используется по своему назначению: весьма значительная часть его уходит в атмосферу через стенки машины или с отходящими газами. Таким образом, машина не только «отопляет атмосферу», но и наносит ей вред, не всегда поправимый.
Транспортные машины - поезда, автомашины, самолеты, корабли - в процессе своего движения испытывают сопротивление среды (будь то воздух или вода). Для снижения потерь на сопротивление среды транспортным машинам придают обтекаемую форму. Не случайно наилучшую в мире форму крыла первых отечественных самолетов удалось найти только после того, как наряду с теоретическими расчетами были проведены и практические испытания его обтекаемости потоком воздуха, поступающего в специально построенную для этого аэродинамическую трубу.
Задача более полного использования тепла в тепловых машинах стояла перед машиностроителями и энергетиками в прошлом веке и продолжает оставаться одной из важнейших проблем современной техники. Ведь повышение коэффициента полезного действия даже на долю процента означает экономию колоссальных количеств угля, нефти и других горючих материалов, это означает серьезную экономию в транспортных средствах и, наконец, экономию труда. В зависимости от типа и характера тепловой машины применяются различные способы экономии тепла. Вспомним, что и мы зимой экономим тепло собственного тела, надевая более плотную одежду, которая увеличивает прослойку воздуха между одеждой и телом, экономим тепло в жилищах, обеспечивая теплоизоляцию.
Значительная доля энергии уходит также через кинематические пары в результате трения. Если представить себе соединения суставов в организме, то они в полном смысле этого слова также являются кинематическими парами, а следовательно, в них возможно трение. Для уменьшения трения природа пошла очень разумным путем: между костями в сочленениях имеется упругая прослойка, их покрывает хрящевая ткань, окружающая полость с суставной жидкостью (если в суставах откладываются соли, они перестают исполнять свои функции). Подобное происходит и в кинематических парах механизмов. Для того чтобы в сочленении двух звеньев не было сухого трения, между ними вводится смазка, которая частично противодействует трению. Кроме того, что процесс трения «забирает» определенное количество энергии, трущиеся детали постепенно срабатываются и в определенное время их нужно менять, так при уменьшении размеров снижается прочность деталей, а при увеличении зазора в кинематической паре сила начинает передаваться от одного звена к другому с ударом, что может вызвать поломку деталей.
Явление трения в машинах в конце прошлого века оказалось одной из наименее разработанных областей механики. Правда, исследованием трения занимались и веком раньше. Однако все эти исследования относились лишь к явлению сухого трения, а увеличившиеся скорости работы механизмов потребовали принципиального пересмотра полученных результатов и их применимости к реальным машинам. Ведь детали машин работали в условиях не сухого, а жидкостного трения, еще неизученного, и поэтому инженерам приходилось работать буквально на ощупь. Не были известными и свойства смазочных масел, и явления, происходившие в смазочном слое, следовательно, все технические рекомендации основывались исключительно на большем или меньшем опыте отдельных техников. Особенно острым был вопрос о смазке машин и подвижного состава железных дорог: плохо смазанные буксы зачастую «горели», и это приводило к авариям.
Оптимальным было бы такое решение, при котором между обоими деталями имелось бы достаточно смазки и трение происходило бы не между самими деталями, а между частицами смазывающей жидкости. Подобный тип смазки называется жидкостным. Его теорию, так называемую гидродинамическую теорию смазки, разработал выдающийся русский инженер Николай Павлович Петров в 1884 г., награжденный за исследования в этой области Ломоносовской премией.
Ученый составил программу исследования смазочных масел, предложив произвести их испытание в условиях, соответствующих действительным, и изучить при этом все параметры в зависимости от всех переменных величин. В результате этих опытов он и пришел к гидродинамической теории трения. По его словам, «смазывающий слой, помещающийся между двумя не прикасающимися одна к другой поверхностями, отделяет их друг от друга», частично прилипая к каждой из них, и «эти две части слоя не могут двигаться одна по другой вполне беспрепятственно, вовсе не увлекая и не задерживая друг друга». Подобного явления никогда не наблюдалось именно потому, что части смазывающего слоя не могут двигаться одна относительно другой «без всякого трения».
Вопрос с буксами был не единственным вопросом, стоявшим перед железнодорожниками. Не меньшую важность приобрел вопрос о силах инерции. Оказалось, что при определенном состоянии пути скорости поездов можно увеличивать лишь до определенных пределов и при том необходимо снижать скорость прохождения по кривой. Выяснено это обстоятельство было чисто практически: поезда начали сходить с рельс, возросло число крушений. То же самое было замечено и на флоте: паровые двигатели также при большом числе оборотов начинали расшатывать корпус корабля, и опять-таки это приводило к нежелательным последствиям. Подобные же явления наблюдались и на стационарных установках.
Все это происходило по разным внешним и внутренним причинам. Сначала на них не обращали внимание, иногда даже «верили», что это какая-то игра случая, а затем серьезно занялись их изучением и обратили внимание на то, что во время работы машин некоторые их детали и агрегаты оказываются неуравновешенными. В качестве примера неуравновешенности можно привести вращение наждачного круга около своей оси. Если ось вращения полностью совпадает с геометрической осью диска, то никаких особых явлений при его вращении не произойдет. Если же ось вращения отстоит от геометрической оси хотя бы на ничтожное расстояние, то круг начнет «бить». Если же начать увеличивать обороты круга, то возрастет и биение, и в определенный момент силы сцепления материала окажутся меньше центробежной силы и круг разорвет.
То же самое явление происходит и со всеми вращающимися частями всех машин. Особенно ярко оно проявляется в паровой машине и в других машинах, основой которых служит кривошипно-ползунный механизм. Ведь даже если не рассматривать шатун, ось вращения кривошипа отстоит на значительном расстоянии от оси, проходящей через его центр тяжести. Значит, «биения» тут неизбежны, и поэтому вопросами уравновешивания паровых машин ученые и инженеры вынуждены были заняться вплотную, когда нежелательные помехи в связи с повышением скоростей значительно увеличились. А поскольку нет ни единой машины, в которой не было бы вращающихся частей, то, очевидно, уравновешивание вращающихся масс оставалось очень важной проблемой механики машин (впрочем, в некоторых машинах, например в центрифугах, научились использовать и свойство неуравновешенности вращающихся масс).
Обратим внимание еще на одно свойство машин. Оно было замечено еще в конце прошлого века, когда русский ученый Иван Васильевич Мещерский начал изучать механику переменных масс. Сперва это учение в основном применялось к движению ракет, хотя и сам Мещерский обращал внимание на некоторые его Применения к машинам. Как показали исследования советских ученых, в очень многих машинах оказалось необходимым учитывать изменения массы в процессе движения, поскольку в практике машиностроения встречаются механизмы со звеньями, имеющими переменную.
Кроме того, существуют механизмы с переменной массой, вибрационные механизмы, важнейшим движением которых являются колебания. С колебаниями ученые познакомились давно, их изучал еще Галилео Галилей. Христиан Гюйгенс изучал колебания применительно к часовому механизму, а Роберг Гук вообще считал, что все явления в мире сводятся к колебательным процессам.
Колебания как явление начали изучать в XVIII в. В сущности, если не учитывать колебания маятника, то первыми исследовались колебания струны. Затем перешли к расчету колебаний пружин, и уже в XIX в., когда вопросы прочности зданий и сооружений породили учение о сопротивлении материалов, начали изучать и колебания строительных деталей опять-таки с точки зрения их прочности. Физиками были изучены колебания в акустике, оптике, элекротехнике и, наконец, в радиотехнике. Все они в какой-то степени раньше или позже нашли свое место и в учении о машинах. Однако механические колебания деталей машин начали изучать значительно позже и сперва в связи с неуравновешенностью отдельных деталей и агрегатов, о которой речь была выше. Уже в начале XX в. было установлено, что колебания в машинах могут быть вредными как для людей, так и для самой машины, а кроме того, для сооружений, расположенных вблизи нее. Но тогда же заметили, что колебательные процессы можно также использовать для исполнения определенных технологических операций. На колебательном принципе строились «соломотрясы», «грохоты» и другие подобные машины.
Механические колебания могут быть свободными и вынужденными. Так, если раскачивать маятник сначала медленно, а затем все быстрее, то при возрастании числа толчков маятник начнет раскачиваться с возрастающей амплитудой, и при совпадении числа толчков с числом свободных колебаний маятника амплитуда достигнет максимума: случай совпадения периодов свободных и вынужденных колебаний называется резонансом. Если же маятнику передаются слишком быстрые колебания, то он практически остается в покое. Подобное явление наблюдается и в живом организме. Примером может служить напряжение руки человека, стремящегося сдвинуть слишком большой груз. При этом, несмотря на то что груз не сдвинулся, мускулы очень быстро начинают уставать вследствие того, что они выполняют работу внутри организма. Такая работа стимулируется очень быстрыми импульсами, и это действие сравнимо с явлением вынужденных колебаний.
Вибрации как вид движения, используемый в механизмах, нашли новое применение во второй половине нашего века. По мнению ученых, машины, основанные на вибрационном принципе действия, определят развитие технологии будущего. Машины этого типа имеют характерные особенности: в их структуру обязательно вводятся упругие элементы для предотвращения последствий больших перегрузок.
Таким образом, машины могут работать в условиях различного рода динамических воздействий. По разным причинам - при неравномерной подаче рабочего тела, снижении или, наоборот, увеличении рабочей нагрузки - им приходится постоянно переходить из одного рабочего режима в другой, а это чревато тяжелыми последствиями. Поэтому вопрос о регулировании их работы ставился издавна и решался различным образом.
Существуют два рода причин, нарушающих равномерность движения машин: внутренне конструктивные и внешние, зависящие от неравномерности подачи рабочего тела и от изменения рабочей нагрузки. Для регулирования хода машин в первом случае обычно ставят маховики. Изображения маховиков можно найти в различных руководствах, вышедших еще два века назад. Пожалуй, первую справку о маховике опубликовал в 1810 г. французский инженер А. Гениво. По его словам, «к вращающимся машинам добавляют одно или два очень тяжелых колеса (из литой стали), которые называются маховиками». Они служат для увеличения массы машины, что обеспечивает сохранение равномерности движения, когда действие двигателя или сопротивления прерывается и создает противодействие резкому изменению скорости, которое могло бы привести к поломке машины. Маховики устанавливаются на всех машинах, движение которых должно быть равномерным, а скорость - постоянной. В описании содержался совет рассчитывать маховики, умножая каждую элементарную массу на квадрат ее расстояния до оси, и придавать маховикам возможно большие размеры.
На протяжении полутора веков шли поиски оптимального расчета маховика. Как оказалось, эта задача не проста, и поэтому при ее решении пришлось вводить некоторые упрощающие задачу предположения. Так, первый метод расчета маховика предложил видный французский инженер, один из основоположников учения о сопротивлении материалов Анри Навье. Он окончил Политехническую школу и Школу мостов и дорог, а затем в них преподавал. По его предположению, к кривошипу, составляющему одно целое с маховиком, приложена некоторая постоянная сила, действующая извне попеременно в одну и в другую сторону. Коромысло и поршень он считал лишенными массы, а длину шатуна - бесконечно большой. Сам расчет проводился на основе закона живой силы.
Значительные усовершенствования в расчет маховика внес другой выпускник Политехнической школы и также затем преподававший в ней Гюстав Гаспар Кориолис. Исходя из уравнения движения машины, он составил графическое решение задачи о маховике. Он не принимал во внимание массы шатуна, и весь расчет поэтому сводился к расчету приведенных масс поршня и коромысла. Паровые машины с коромыслом занимали важное место в стационарных установках, а затем от этой конструкции постепенно отказались. Однако те принципы, которые положил Кориолис в основу своего расчета, оказались наиболее приемлемыми, и их повторил уже в начале нашего века австрийский механик Фердинанд Виттенбауэр.
В сущности, идея регулирования хода машины с помощью маховика существовала еще до изобретения паровой машины. В частности, маховик встречается среди механических приспособлений Леонардо да Винчи, который применил его к станку, приводимому в движение с помощью рукоятки. Как уже говорилось, первые паровые машины служили для откачки воды из шахт, поэтому они были спарены с насосом и не требовали маховика по причине очень медленного действия. В тех же случаях, когда их пытались использовать в качестве двигателя каких-либо станков, роль маховика выполнял гидравлический трансформатор: поршень машины при помощи коромысла приводил в движение поршень насоса, подававшего воду на лопасти верхнебойного колеса, которое и обеспечивало равномерное вращение.
Изобретатель парового двигателя Джеймс Уатт не смог сразу использовать кривошипно-ползунный механизм в качестве основного механизма своей машины, поскольку оказалось, что некий Джеймс Пиккард из Бирмингема уже получил патент на применение коленчатого вала как способа приложения паровой машины к «вращению колес». Несмотря на то что, по образному выражению Уатта, применение такого вида к машине «было подобно применению ножа, предназначенного для резки хлеба, к резке сыра» вплоть до окончания действия этого патента, изобретатель вынужден был применять для вращательного движения иные механизмы. Правда, он мог опротестовать патент, полученный на слишком старое и известное изобретение, но он, вероятно, боялся, что в этом случае могут быть поставлены под сомнение и некоторые его собственные патенты. (Существует мнение, что все-таки несколько машин, снабженных коленчатым валом, было выпущено Уаттом и до окончания срока действия патента).
В 1779 г. Мэтью Уозброу, инженер из Бристоля, получил патент на некоторые улучшения в конструкции «огневой машины». Для преобразования поступательного движения поршня он пользовался храповым механизмом, а на одну ось с храповым колесом насадил маховик. Это было первое применение маховика в практике построения паровых машин, и оно оказалось настолько удачным, что автор получил заказ на изготовление нескольких машин такого типа. Однако храповой механизм постоянно выходил из строя, и через год на одной из машин был поставлен кривошипно-шатунный механизм с маховиком. С этого времени маховик уже не покидал паровую машину.
В 1784 г. Джеймс Уатт построил на заводе в Сохо свою первую машину с двумя усовершенствованиями. Здесь он впервые применил центробежный регулятор и планетарную передачу. Последняя была им изобретена на два года раньше именно в целях преобразования поступательного движения во вращательное. Маховик заклинивался не на валу кривошипа, а на втулке зубчатого колеса, свободно надетой на оси кривошипа, благодаря зацеплению с зубчаткой шатуна, вращающейся примерно в два раза быстрее кривошипа. По словам изобретателя, «это устройство имеет большое преимущество: давая двойную скорость маховику... оно уменьшает в четыре раза вес его обода». Это обстоятельство использовали и некоторые его последователи, предпочитавшие заклинивать маховик не на коренном валу паровой машины, а на валу зубчатого колеса, сцепленного с коренным валом, в результате чего значительно повышалась равномерность работы станков, приводимых в действие паровой машиной.
Однако, как бы ни ставился маховик, во всех случаях он остается тяжелой деталью, и чем больше его вес, тем равномернее вращение машины. Поэтому не всегда такая громоздкая деталь вписывалась в общие габариты машины. К тому же при этом увеличивалась работа сил трения. Эту задачу можно было бы решить увеличением диаметра маховика, что могло существенно его облегчить. Вес обода можно было бы сделать достаточно легким, но при этом увеличится линейная скорость обода и, следовательно, возрастут центробежные усилия, которые могут превзойти те, которые являются допустимыми для материала. Кроме того, габариты машины при этом значительно увеличатся.
Поэтому наиболее приемлемым решением вопроса представлялось конструирование двигателей таким образом, чтобы на коленчатый вал действовали шатуны нескольких цилиндров. К подобному решению шли при сооружении локомотивов, к нему же пришли и в авиации, и автомотостроении. Что касается расчета маховых масс, то здесь было предложено несколько решений. Мы уже упоминали метод Виттенбауэра, основанный на построении кривой зависимости приращения кинетической энергии от приведенной массы звеньев механизма. Но принципиальная точность этого метода оказалась лишь кажущейся, так как довольно сложные построения приводят в результате к значительным ошибкам и становятся менее точными, чем приближенные способы.
Ученик Н. Е. Жуковского Николай Иванович Мерцалов в 1914 г. предложил метод, при котором нахождение положений ведущего звена механизма по соответствующим максимальной и минимальной его скоростям достигается построением основной диаграммы приращения кинетической энергии и двух диаграмм приращения кинетической энергии от приведенных масс, подсчитанных для крайних значений скорости ведущего звена.
В 1943 г. свой точный метод предложил И. И. Артоболевский: для определения маховых масс строится диаграмма тангенциальных сил, или моментов, из которой находится работа движущих сил за полный цикл, после чего из уравнения «живых сил» получается величина момента инерции махового колеса. Эти исследования показали, какое значение может иметь глубокое количественное и качественное исследование уравнения движения машины. На протяжении ряда лет школа Артоболевского занималась изучением этого уравнения, и были получены в этом отношении весьма существенные результаты, давшие многочисленные выходы в практику.
Еще более важным и перспективным оказался второй способ регулирования хода машин для тех случаев, когда причины, нарушавшие правильность хода, были внешними по отношению к машине. Мы видели, что уже в паровой машине был поставлен центробежный регулятор. История регулятора начинается в XI или XII в., когда на ветряных мельницах начали ставить приспособление, предохраняющее муку от сгорания в случае очень сильного ветра. Регулятор применялся на паровых машинах в XVIII в. В патенте на паровую машину двойного действия был предусмотрен механический центробежный регулятор, управляющий поступлением пара в цилиндр машины. С этого времени, в сущности, и начинается история внедрения автоматического регулирования, которое внесло в структуру машины первый элемент управления. Подобные регуляторы применялись в XVIII в. и даже в начале XIX в.
Но уже к середине прошлого века появились мощные быстроходные паровые машины, характер регулирования хода которых принципиально изменился. В старых машинах были большие маховики и легкие регуляторы со значительным коэффициентом неравномерности, в новых - размеры и вес маховиков уменьшились, а требования к точности регулирования повысились. Но решение этой задачи оказалось непростым: ее пробовали решать путем уменьшения трения, однако это влекло за собой нарушение условий устойчивости. Предполагалось также, что задачу можно решить путем уменьшения коэффициента неравномерности, изменяя конструкцию регулятора в сторону приближения к астатическому регулятору с коэффициентом неравномерности, равным нулю.
Одним из первых пытался решить задачу регулирования английский астроном и изобретатель Джордж Бидделл Эри. Он предложил присоединить к муфте конического регулятора особый водяной катаракт, развивающий силу трения, пропорциональную скорости муфты, что должно ликвидировать вредные колебания регулятора. Однако теории регулятора с катарактом создать ему не удалось.
Знаменитый английский физик, создатель электродинамики Джеймс Клерк Максвелл также рассмотрел ряд задач об устойчивости машины. Развивая теорию малых колеоаний некоторой движущейся системы, он пришел к выводу, что выбор регуляторов астатического типа предпочтительнее. Но это исследование было чисто теоретическим и не дало результатов, нужных для инженеров.
Классическое решение этого вопроса дал русский ученый Иван Алексеевич Вышнеградский, один из основоположников учения о машинах. Следуя совету своего учителя Михаила Васильевича Остроградского, который рекомендовал всегда объединять теорию с практикой, он получил фундаментальные результаты в теории машин. В области теории регулирования он также подошел к решению этой задачи практически, доказав, что как раз астатический регулятор не пригоден для регулирования. В результате им были сформулированы знаменитые тезисы: «без неравномерности нет регулятора»; «без катаракта нет регулятора».
Благодаря этим исследованиям было не только найдено решение основной задачи теории регулирования, но и выяснено ее место в учении о машинах. Стало ясно, что машина и регулятор представляют собой единое целое и что при переходных режимах возможно самораскачивание всей системы.
Продолжил исследования в области теории автоматического регулирования словацкий инженер и ученый Аурель Стодола. Он изучал и решал задачу непрямого регулирования. В своей работе, посвященной прямому регулированию и опубликованной в конце XIX в., он исследовал регуляторы, в которых осуществляется так называемое воздействие по производной. Сначала он распространил на эти регуляторы теорию Вышнеградского. Затем очень простым приемом он учел влияние сухого трения и тем самым решил нелинейную задачу. Наконец, он точно установил преимущества и недостатки плоских регуляторов, в которых для перестановочного усилия используются как центробежные, так и тангенциальные силы инерции.
Как правило, регулятор является механизмом с двумя степенями свободы. Так, например, если он должен регулировать подачу пара к паровой машине, то при увеличении количества подаваемого пара он срабатывает и частично перекрывает впускное отверстие, тем самым уменьшая это количество.
Мы остановились на работах словацкого инженера. Естественно, что на них исследования в области теории автоматического регулирования не закончились. В дальнейшем этими проблемами занимались и другие механики. Существенный вклад в теорию регулирования был сделан и французскими учеными.
В настоящее время применяются разнообразные по своей конструкции регуляторы: центробежные, плоские и пространственные, инерционные, регуляторы электрического типа. Принципиально новыми являются регуляторы с вычислительными устройствами, преимущества которых выявились в так называемых самонастраивающихся системах.
«Самоуправление» машины и элементы автоматизации технологического процесса имеют также длительную историю. Если не принимать во внимание различных устройств, использованных при сооружении механических кукол, то эту историю можно было бы начать с изобретения, о котором уже говорилось выше. Сущность этого изобретения заключается в установке перфорированной призмы, через которую проходят иглы, предварительно пропускаемые через отверстия картонных карт. Другим прообразом автоматизации стали составление последовательности требуемых операций в виде циклограммы и конструирование отдельных механизмов, выполняющих технологические операции в соответствии с этой циклограммой. Третьим основополагающим изобретением следует считать создание программ для вычислительной техники, прообраз которых родился еще в первой четверти прошлого века.
Дальнейшим этапом развития машин стало создание механических систем, управляемых ЭВМ. Вне зависимости от того, в какой степени компьютер может выполнять предписанные технологические функции, точность выполнения операций будет продолжать расти. Естественно, что возможны «сбои» в работе искусственного мозга, ведь и человек, выполняющий сложную операцию, может ошибаться, несмотря на то что его мозг является объектом несравненно более мощным, чем любой искусственный интеллект. Однако можно сказать, что работа автоматического устройства как угодно близко подходит к идеальной, и его безошибочное действие весьма вероятно. Ошибка может быть функцией или неучтенных обстоятельств при создании и сооружении автомата, или какой-либо внешней причины, зависящей от ближайшей или отдаленной среды, которая может повлиять и на машину, и на исполняемую ею работу.
Все это опять-таки приближает машину к человеку и заставляет использовать при изучении ее поведения результаты не только физики и механики, но и целого ряда естественных наук, включая даже биологию, с чего, впрочем, и начали творцы кибернетики.